Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Antibacterial Potential of Chlorella vulgaris and Dunaliella salina Extracts Against Streptococcus mutans

Shima Jafari 1 , 2 , 3 , Mohammad Ali Mobasher 1 , 2 , 4 , 5 , * , Sohrab Najafipour 1 , 2 , 6 , Younes Ghasemi 4 , 5 , 7 , Milad Mohkam 4 , 5 , 7 , Mohammad Ali Ebrahimi 3 and Nazanin Mobasher 8
Authors Information
1 Noncommunicable Diseases Research Center, School of Medicine, Fasa University of Medical Sciences, Fasa, IR Iran
2 Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, IR Iran
3 Department of Agricultural Biotechnology, Payame Noor University, Tehran, IR Iran
4 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
5 Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
6 Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, IR Iran
7 Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
8 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: May 2018, 13 (2); e13226
  • Published Online: May 14, 2018
  • Article Type: Research Article
  • Received: November 6, 2016
  • Revised: May 14, 2017
  • Accepted: March 10, 2018
  • DOI: 10.5812/jjnpp.13226

To Cite: Jafari S, Mobasher M A, Najafipour S, Ghasemi Y, Mohkam M, et al. Antibacterial Potential of Chlorella vulgaris and Dunaliella salina Extracts Against Streptococcus mutans, Jundishapur J Nat Pharm Prod. 2018 ; 13(2):e13226. doi: 10.5812/jjnpp.13226.

Abstract
Copyright © 2018, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
References
  • 1. Tanzer JM. Dental caries is a transmissible infectious disease: the Keyes and Fitzgerald revolution. J Dent Res. 1995;74(9):1536-42. doi: 10.1177/00220345950740090601. [PubMed: 7560413].
  • 2. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50(4):353-80. [PubMed: 3540569].
  • 3. Yoshida A, Kuramitsu HK. Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation. Appl Environ Microbiol. 2002;68(12):6283-91. [PubMed: 12450853].
  • 4. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 2003;66(7):1022-37. doi: 10.1021/np030096l. [PubMed: 12880330].
  • 5. Syed S, Arasu A, Ponnuswamy I. The Uses of Chlorella Vulgaris as Antimicrobial Agent and as a Diet: the Presence of Bio-active Compounds which caters the Vitamins, Minerals in General. Int J Biosci Biotechnol. 2015;7(1):185-90.
  • 6. Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: methods and applications. J Appl Microbiol. 2009;107(1):14-35. doi: 10.1111/j.1365-2672.2009.04153.x. [PubMed: 19245408].
  • 7. Oren A. A hundred years of Dunaliella research: 1905–2005. Salin System. 2005;1(2):1-14.
  • 8. Oren A, Rodríguez-Valera F. The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol. 2001;36(2-3):123-30.
  • 9. Neermann J, Wagner R. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol. 1996;166(1):152-69.
  • 10. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol. 2008;19(5):430-6. doi: 10.1016/j.copbio.2008.07.008. [PubMed: 18725295].
  • 11. Kerem M, Salman B, Pasaoglu H, Bedirli A, Alper M, Katircioglu H, et al. Effects of microalgae Chlorella species crude extracts on intestinal adaptation in experimental short bowel syndrome. World J Gastroenterol. 2008;14(28):4512-7. [PubMed: 18680231].
  • 12. Zheng L, Oh ST, Jeon JY, Moon BH, Kwon HS, Lim SU, et al. The Dietary Effects of Fermented Chlorella vulgaris (CBT((R))) on Production Performance, Liver Lipids and Intestinal Microflora in Laying Hens. Asian-Australas J Anim Sci. 2012;25(2):261-6. doi: 10.5713/ajas.2011.11273. [PubMed: 25049560].
  • 13. Kidd E. The implications of the new paradigm of dental caries. J Dent. 2011;39 Suppl 2:S3-8. doi: 10.1016/j.jdent.2011.11.004. [PubMed: 22085623].
  • 14. Mendiola JA, Santoyo S, Cifuentes A, Reglero G, Ibanez E, Senorans FJ. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J Food Prot. 2008;71(10):2138-43. [PubMed: 18939768].
  • 15. Rasoul-Amini S, Ghasemi Y, Morowvat MH, Mohagheghzadeh A. PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chem. 2009;116(1):129-36. Persian.
  • 16. Rasoul-Amini S, Mousavi P, Montazeri-Najafabady N, Mobasher MA, Mousavi SB, Vosough F. Biodiesel properties of native strain of Dunaliella Salina. Renew Energy. 2014;4(1):39-41. Persian.
  • 17. Rasoul-Amini S, Montazeri-Najafabady N, Mobasher MA, Hoseini-Alhashemi S, Ghasemi Y. Chlorella sp.: A new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Appl Energy. 2011;88(10):3354-6. Persian.
  • 18. Ajayi I, Ajibade O, Oderinde R. Preliminary phytochemical analysis of some plant seeds. Res J Chem Sci. 2011;1(3):58-62.
  • 19. Mergani M. Preliminary Phytochemical Screening. University of khartoum; 2013.
  • 20. Watts JL, Clinical IL. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: approved standard. National Committee for Clinical Laboratory Standards; 2016.
  • 21. Fadoul HE, Juntawong N. Antimicrobial Activity of Extracts from Aquatic Algae Isolated From Salt Soil and Fresh Water in Thailand. Int J Res Stud Biosci. 2014;2(11):149-52.
  • 22. Taskin E, Ozturk M, Kurt O. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). Afr J Biotechnol. 2007;6(24):2746-51.
  • 23. Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Mol Oral Microbiol. 2015;30(1):16-26. doi: 10.1111/omi.12063. [PubMed: 24961744].
  • 24. Barbieri DS, Tonial F, Lopez PV, Sales Maia BH, Santos GD, Ribas MO, et al. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch Oral Biol. 2014;59(9):887-96. doi: 10.1016/j.archoralbio.2014.05.006. [PubMed: 24907518].
  • 25. Krishnaraju AV, Rao TV, Sundararaju D, Vanisree M, Tsay H. S , Sub BG. Biological screening of medicinal plants collected from Eastern Ghats of India using Artemia salina (brine shrimp test). Int J Appl Sci Eng. 2006;4(2):115-25.
  • 26. Tan DC, Flematti GR, Ghisalberti EL, Sivasithamparam K, Barbetti MJ. Toxigenicity of enniatins from Western Australian Fusarium species to brine shrimp (Artemia franciscana). Toxicon. 2011;57(5):817-25. doi: 10.1016/j.toxicon.2011.02.019. [PubMed: 21352844].
  • 27. Chu WL. Biotechnological applications of microalgae. Int J Res Stud Biosci. 2012;6(Suppl 1):S24-37.
  • 28. Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol. 1995;7(1):3-15.
  • 29. van Houte J. Microbiological predictors of caries risk. Adv Dent Res. 1993;7(2):87-96. doi: 10.1177/08959374930070022001. [PubMed: 8260016].
  • 30. Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005;33(4):248-55. doi: 10.1111/j.1600-0528.2005.00232.x. [PubMed: 16008631].
  • 31. Kleinberg I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med. 2002;13(2):108-25. [PubMed: 12097354].
  • 32. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564-82. [PubMed: 10515903].
  • 33. Song JH, Kim SK, Chang KW, Han SK, Yi HK, Jeon JG. In vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Arch Oral Biol. 2006;51(12):1131-40. doi: 10.1016/j.archoralbio.2006.06.011. [PubMed: 16914113].
  • 34. Simoes M, Bennett RN, Rosa EA. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep. 2009;26(6):746-57. doi: 10.1039/b821648g. [PubMed: 19471683].
  • 35. Uma R, Sivasubramanian V, Niranjali Devaraj S. Preliminary phycochemical analysis and in vitro antibacterial screening of green micro algae, Desmococcus Olivaceous, Chlorococcum humicola and Chlorella vulgaris. J Algal Biomass Utln. 2011;2(3):74-81.
  • 36. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629-42. doi: 10.1007/s00253-009-2355-3. [PubMed: 19956944].
  • 37. Leaves V. Preliminary phytochemistry, antimicrobial properties and acute toxicity of Stachytarpheta jamaicensis (L.) Vahl. leaves. Trend Med Res. 2007;2(4):193-8.
  • 38. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci. 2016;3:68.
  • 39. Sanmukh S, Bruno B, Ramakrishnan U, Khairnar K, Swaminathan S, Paunikar W. Bioactive compounds derived from microalgae showing antimicrobial activities. Aquacultur. 2014;5(3):224.
  • 40. Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69-86. doi: 10.1159/000324598. [PubMed: 21346355].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments