Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

A Novel Microemulsion System for Ocular Delivery of Azithromycin: Design, Characterization and Ex-Vivo Rabbit Corneal Permeability

Anayatollah Salimi 1 , * , Mahmoud-Reza Panahi-Bazaz 2 and Ehsan Panahi-Bazaz 3
Authors Information
1 Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Department of Ophthalmology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: May 2017, 12 (2); e13938
  • Published Online: February 28, 2017
  • Article Type: Research Article
  • Received: September 20, 2016
  • Revised: January 18, 2017
  • Accepted: February 14, 2017
  • DOI: 10.5812/jjnpp.13938

To Cite: Salimi A, Panahi-Bazaz M, Panahi-Bazaz E. A Novel Microemulsion System for Ocular Delivery of Azithromycin: Design, Characterization and Ex-Vivo Rabbit Corneal Permeability, Jundishapur J Nat Pharm Prod. 2017 ; 12(2):e13938. doi: 10.5812/jjnpp.13938.

Abstract
Copyright © 2017, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Shen J, Wang Y, Ping Q, Xiao Y, Huang X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release. 2009; 137(3): 217-23[DOI][PubMed]
  • 2. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems--recent advances. Prog Retin Eye Res. 1998; 17(1): 33-58[PubMed]
  • 3. Araujo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine. 2009; 5(4): 394-401[DOI][PubMed]
  • 4. Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004; 99(2): 241-58[DOI][PubMed]
  • 5. de la Fuente M, Ravina M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010; 62(1): 100-17[DOI][PubMed]
  • 6. Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release. 2006; 111(1-2): 145-52[DOI][PubMed]
  • 7. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008; 13(3-4): 144-51[DOI][PubMed]
  • 8. Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010; 29(6): 596-609[DOI][PubMed]
  • 9. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012; 8(2): 147-66[DOI][PubMed]
  • 10. Dinos GP, Michelinaki M, Kalpaxis DL. Insights into the mechanism of azithromycin interaction with an Escherichia coli functional ribosomal complex. Mol Pharmacol. 2001; 59(6): 1441-5[PubMed]
  • 11. Champney WS, Burdine R. Azithromycin and clarithromycin inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells. Curr Microbiol. 1998; 36(2): 119-23[PubMed]
  • 12. Meyer AP, Bril-Bazuin C, Mattie H, van den Broek PJ. Uptake of azithromycin by human monocytes and enhanced intracellular antibacterial activity against Staphylococcus aureus. Antimicrob Agents Chemother. 1993; 37(11): 2318-22[PubMed]
  • 13. Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H, et al. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother. 2005; 49(4): 1377-80[DOI][PubMed]
  • 14. Bowman LM, Si E, Pang J, Archibald R, Friedlaender M. Development of a topical polymeric mucoadhesive ocular delivery system for azithromycin. J Ocul Pharmacol Ther. 2009; 25(2): 133-9[DOI][PubMed]
  • 15. Sevillano D, Alou L, Aguilar L, Echevarria O, Gimenez MJ, Prieto J. Azithromycin iv pharmacodynamic parameters predicting Streptococcus pneumoniae killing in epithelial lining fluid versus serum: an in vitro pharmacodynamic simulation. J Antimicrob Chemother. 2006; 57(6): 1128-33[DOI][PubMed]
  • 16. Luke DR, Foulds G. Disposition of oral azithromycin in humans. Clin Pharmacol Ther. 1997; 61(6): 641-8[DOI][PubMed]
  • 17. Friedlaender MH, Protzko E. Clinical development of 1% azithromycin in DuraSite, a topical azalide anti-infective for ocular surface therapy. Clin Ophthalmol. 2007; 1(1): 3-10[PubMed]
  • 18. Changez M, Varshney M. Aerosol-OT microemulsions as transdermal carriers of tetracaine hydrochloride. Drug Dev Ind Pharm. 2000; 26(5): 507-12[DOI][PubMed]
  • 19. Fialho SL, da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004; 32(6): 626-32[DOI][PubMed]
  • 20. Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res. 2002; 21(1): 15-34[PubMed]
  • 21. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000; 45(1): 89-121[PubMed]
  • 22. Moghimipour E, Salimi A, Leis F. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv Pharm Bull. 2012; 2(2): 141-7[DOI][PubMed]
  • 23. Wilk KA, Zielinska K, Hamerska-Dudra A, Jezierski A. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence. J Colloid Interface Sci. 2009; 334(1): 87-95[DOI][PubMed]
  • 24. Moghimipour E, Salimi A, Eftekhari S. Design and characterization of microemulsion systems for naproxen. Adv Pharm Bull. 2013; 3(1): 63-71[DOI][PubMed]
  • 25. Ramesh Shah R, Shripal Magdum C, Shivagonda Patil S, Shanawaj Niakwade N. Preparation and evaluation of aceclofenac topical microemulsion. Iran J Pharm Res. 2010; 9(1): 5-11[PubMed]
  • 26. Zhang X, Sun X, Li J, Zhang X, Gong T, Zhang Z. Lipid nanoemulsions loaded with doxorubicin-oleic acid ionic complex: characterization, in vitro and in vivo studies. Pharmazie. 2011; 66(7): 496-505[PubMed]
  • 27. Salimi A, Sharif Makhmal Zadeh B, Moghimipour E. Preparation and characterization of cyanocobalamin (vit B12) microemulsion properties and structure for topical and transdermal application. Iran J Basic Med Sci. 2013; 16(7): 865-72[PubMed]
  • 28. Mergler S, Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retin Eye Res. 2007; 26(4): 359-78[DOI][PubMed]
  • 29. Greenbaum A, Hasany SM, Rootman D. Optisol vs Dexsol as storage media for preservation of human corneal epithelium. Eye (Lond). 2004; 18(5): 519-24[DOI][PubMed]
  • 30. Moghimipour E, Salimi A, Rad AS. A microemulsion system for controlled corneal delivery of timolol. Int Res J Pharm App Sci. 2013; 3(4): 32-9
  • 31. Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci. 2011; 100(5): 1833-46[DOI][PubMed]
  • 32. Zhang J, Michniak-Kohn B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Int J Pharm. 2011; 421(1): 34-44[DOI][PubMed]
  • 33. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001; 47(2-3): 165-96[PubMed]
  • 34. Dong X, Ke X, Liao Z. The microstructure characterization of meloxicam microemulsion and its influence on the solubilization capacity. Drug Dev Ind Pharm. 2011; 37(8): 894-900[DOI][PubMed]
  • 35. Naveh N, Weissman C, Muchtar S, Benita S, Mechoulam R. A submicron emulsion of HU-211, a synthetic cannabinoid, reduces intraocular pressure in rabbits. Graefes Arch Clin Exp Ophthalmol. 2000; 238(4): 334-8[PubMed]
  • 36. Van Der Bijl P, Engelbrecht AH, Van Eyk AD, Meyer D. Comparative permeability of human and rabbit corneas to cyclosporin and tritiated water. J Ocul Pharmacol Ther. 2002; 18(5): 419-27[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments