Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Investigation on the Effect of Ketotifen Upon Morphine Tolerance and Dependence in Mice

Parya Alipour 1 , 2 , Mohammad Javad Khodayar 2 , 3 , * , Mohammad Taghi Mansouri 4 and Behnam Ghorbanzadeh 5
Authors Information
1 Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Faculty of Allied Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4 Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
5 Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: August 2018, 13 (3); e16303
  • Published Online: August 27, 2018
  • Article Type: Research Article
  • Received: March 4, 2016
  • Revised: June 20, 2017
  • Accepted: May 12, 2018
  • DOI: 10.5812/jjnpp.16303

To Cite: Alipour P, Khodayar M J, Mansouri M T, Ghorbanzadeh B. Investigation on the Effect of Ketotifen Upon Morphine Tolerance and Dependence in Mice, Jundishapur J Nat Pharm Prod. 2018 ; 13(3):e16303. doi: 10.5812/jjnpp.16303.

Abstract
Copyright © 2018, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnote
References
  • 1. Bhargava HN. Diversity of agents that modify opioid tolerance, physical dependence, abstinence syndrome, and self-administrative behavior. Pharmacol Rev. 1994;46(3):293-324. [PubMed: 7831382].
  • 2. Bekhit MH. Opioid-induced hyperalgesia and tolerance. Am J Ther. 2010;17(5):498-510. doi: 10.1097/MJT.0b013e3181ed83a0. [PubMed: 20844348].
  • 3. Carmack SA, Koob GF, Anagnostaras SG. Learning and memory in addiction. reference module in neuroscience and biobehavioral psychology. Elsevier. 2017.
  • 4. Tomkins DM, Sellers EM. Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence. CMAJ. 2001;164(6):817-21. [PubMed: 11276551]. [PubMed Central: PMC80880].
  • 5. Przewlocki R. Opioid abuse and brain gene expression. Eur J Pharmacol. 2004;500(1-3):331-49. doi: 10.1016/j.ejphar.2004.07.036. [PubMed: 15464044].
  • 6. Koob GF, Le Moal M. Neurobiology of drug addiction. Stages and pathways of drug involvement: examining the gateway hypothesis. New York: Cambridge University Press; 2002.
  • 7. Zarrindast MR, Farzin D. Nicotine attenuates naloxone-induced jumping behaviour in morphine-dependent mice. Eur J Pharmacol. 1996;298(1):1-6. doi: 10.1016/0014-2999(95)00761-x.
  • 8. Kim DH, Fields HL, Barbaro NM. Morphine analgesia and acute physical dependence: rapid onset of two opposing, dose-related processes. Brain Res. 1990;516(1):37-40. doi: 10.1016/0006-8993(90)90894-h.
  • 9. Dambisya YM, Lee TL. Role of nitric oxide in the induction and expression of morphine tolerance and dependence in mice. Brit J Pharmacol. 1996;117(5):914-8. doi: 10.1111/j.1476-5381.1996.tb15280.x.
  • 10. Mazurkiewicz-Kwilecki IM, Bielkiewicz B. The effects of chronic morphine treatment on histamine concentration and histidine decarboxylase activity in rat brain. Prog Neuro Psychopharmacol. 1978;2(1):93-9. doi: 10.1016/0364-7722(78)90027-9.
  • 11. Nishibori M, Oishi R, Itoh Y, Saeki K. Morphine-induced changes in histamine dynamics in mouse brain. J Neurochem. 1985;45(3):719-24. doi: 10.1111/j.1471-4159.1985.tb04051.x. [PubMed: 4031857].
  • 12. Oishi R, Nishibori M, Itoh Y, Saeki K, Fukuda T, Araki Y. Histamine turnover in the brain of morphine-dependent mice. Naunyn Schmiedebergs Arch Pharmacol. 1988;337(1):58-63. doi: 10.1007/BF00169477. [PubMed: 3368014].
  • 13. Wong CL, Roberts MB. The possible role of brain histamine and H1 and H2 receptors in the development of morphine tolerance and physical dependence in mice. Agents Actions. 1975;5(5):476-83. doi: 10.1007/BF01972684. [PubMed: 1241224].
  • 14. Wong CL, Roberts MB. The effects of L-histidine and of specific histamine receptor agonists, on the expression of morphine tolerance and physical dependence in mice. Agents Actions. 1976;6(5):569-76. doi: 10.1007/BF01971571. [PubMed: 987696].
  • 15. Hough LB, Nalwalk JW. Inhibition of morphine antinociception by centrally administered histamine H2 receptor antagonists. Eur J Pharmacol. 1992;215(1):69-74. doi: 10.1016/0014-2999(92)90610-g.
  • 16. Craps L. Ketotifen in the oral prophylaxis of bronchial asthma: a review. Pharmatherapeutica. 1981;3(1):18-35. [PubMed: 6119703].
  • 17. Craps L. Prophylaxis of asthma with ketotifen in children and adolescents: a review. Pharmatherapeutica. 1983;3(5):314-26. [PubMed: 6405397].
  • 18. Grant SM, Goa KL, Fitton A, Sorkin EM. Ketotifen. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs. 1990;40(3):412-48. doi: 10.2165/00003495-199040030-00006. [PubMed: 2226222].
  • 19. Khodayar MJ, Taherzadeh E, Siahpoosh A, Mansourzadeh Z, Tabatabaei SA. Thymus daenensis extract and essential oils effects on morphine withdrawal signs in mice. Jundishapur J Nat Pharm Prod. 2014;9(3). e9959. doi: 10.17795/jjnpp-9959. [PubMed: 25237649]. [PubMed Central: PMC4165192].
  • 20. Eddy NB. Heroin (Diacetylmorphine): laboratory and clinical evaluation of its effectiveness and addiction liability. Bull Narcotics. 1953;5(2):39.
  • 21. Mansouri MT, Khodayar MJ, Tabatabaee A, Ghorbanzadeh B, Naghizadeh B. Modulation of morphine antinociceptive tolerance and physical dependence by co-administration of simvastatin. Pharmacol Biochem Behav. 2015;137:38-43. doi: 10.1016/j.pbb.2015.08.002. [PubMed: 26255154].
  • 22. Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. AAPS J. 2008;10(4):537-51. doi: 10.1208/s12248-008-9056-1. [PubMed: 18989788]. [PubMed Central: PMC2628209].
  • 23. Savage S, Covington EC, Heit HA, Hunt J, Joranson D, Schnoll SH. Definitions related to the use of opioids for the treatment of pain: consensus statement of the american academy of pain medicine, the american pain society, and the american society of addiction medicine. American Society of Addiction Medicine,. 2001.
  • 24. Katzung BG, Masters SB, Trevor AJ. Basic and clinical pharmacology (lange basic science). McGraw-Hill Education; 2012.
  • 25. Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage. 2003;25(1):74-91. doi: 10.1016/S0885-3924(02)00531-6. [PubMed: 12565191].
  • 26. Sun CL, Hui FW, Hanig JP. Effect of H1 blockers alone and in combination with morphine to produce antinociception in mice. Neuropharmacology. 1985;24(1):1-4. doi: 10.1016/0028-3908(85)90086-3. [PubMed: 2858829].
  • 27. Kosten TR, George TP. The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect. 2002;1(1):13.
  • 28. Akaoka H, Aston-Jones G. Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J Neurosci. 1991;11(12):3830-9. [PubMed: 1683899].
  • 29. Iwamoto ET, Ho IK, Way EL. Elevation of brain dopamine during naloxone-precipitated withdrawal in morphine-dependent mice and rats. J Pharmacol Exp Ther. 1973;187(3):588-67. [PubMed: 4797745].
  • 30. Korotkova TM, Sergeeva OA, Ponomarenko AA, Haas HL. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology. 2005;49(1):129-34. doi: 10.1016/j.neuropharm.2005.03.001. [PubMed: 15992588].
  • 31. Popik P, Skolnick P. The NMDA antagonist memantine blocks the expression and maintenance of morphine dependence. Pharmacol Biochem Behav. 1996;53(4):791-7. doi: 10.1016/0091-3057(95)02163-9. [PubMed: 8801580].
  • 32. Burban A, Faucard R, Armand V, Bayard C, Vorobjev V, Arrang JM. Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site. J Pharmacol Exp Ther. 2010;332(3):912-21. doi: 10.1124/jpet.109.158543. [PubMed: 20008958].
  • 33. Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637-72. doi: 10.1016/s0301-0082(00)00039-3.
  • 34. Imankhah T, Ghanbarzadeh S. Effect of clonidine and ketotifen on tolerance induced to morphine antinociception in mice. Res Pharmaceutical Sc. 2012;7(5):37.
  • 35. Toda N, Kishioka S, Hatano Y, Toda H. Modulation of opioid actions by nitric oxide signaling. Anesthesiology. 2009;110(1):166-81. doi: 10.1097/ALN.0b013e31819146a9. [PubMed: 19104184].
  • 36. Galosi R, Lenard L, Knoche A, Haas H, Huston JP, Schwarting RK. Dopaminergic effects of histamine administration in the nucleus accumbens and the impact of H1-receptor blockade. Neuropharmacology. 2001;40(4):624-33. doi: 10.1016/S0028-3908(00)00181-7. [PubMed: 11249972].
  • 37. Skrabalova J, Drastichova Z, Novotny J. Morphine as a potential oxidative stress-causing agent. Mini Rev Org Chem. 2013;10(4):367-72. doi: 10.2174/1570193X113106660031. [PubMed: 24376392]. [PubMed Central: PMC3871421].
  • 38. Mannaioni P, Masini E. The release of histamine by free radicals. Free Radic Biol Med. 1988;5(3):177-97. doi: 10.1016/0891-5849(88)90080-9.
  • 39. Taiwo OB, Kovacs KJ, Sperry LC, Larson AA. Naloxone-induced morphine withdrawal increases the number and degranulation of mast cells in the thalamus of the mouse. Neuropharmacology. 2004;46(6):824-35. doi: 10.1016/j.neuropharm.2003.11.022. [PubMed: 15033342].
  • 40. Marshall JS, McCurdy JD, Olynych T. Toll-like receptor-mediated activation of mast cells: implications for allergic disease? Int Arch Allergy Immunol. 2003;132(2):87-97. doi: 10.1159/000073709. [PubMed: 14600420].
  • 41. Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal. 2007;7:98-111. doi: 10.1100/tsw.2007.230. [PubMed: 17982582]. [PubMed Central: PMC5901235].
  • 42. Li Q. Antagonists of toll like receptor 4 maybe a new strategy to counteract opioid-induced hyperalgesia and opioid tolerance. Med Hypotheses. 2012;79(6):754-6. doi: 10.1016/j.mehy.2012.08.021. [PubMed: 23062774].
  • 43. Hutchinson MR, Loram LC, Zhang Y, Shridhar M, Rezvani N, Berkelhammer D, et al. Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience. 2010;168(2):551-63. doi: 10.1016/j.neuroscience.2010.03.067. [PubMed: 20381591]. [PubMed Central: PMC2872682].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments