Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Antimicrobial Activities of the Polypropylene Imine Dendrimer Aginst Bacteria Isolated From Rural Water Resources

Mohammad Ahmadi Jebelli 1 , Enayatollah Kalantar 2 , Afshin Maleki 1 , * , Hassan Izanloo 3 , Fardin Gharibi 4 , Hiua Daraei 1 , Bagher Hayati 1 , Ehsan Ghasemi 5 and Ali Azari 6
Authors Information
1 Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR Iran
2 Dietary and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, IR Iran
3 Department of Environmental Health Engineering and Research Center for Environment Pollutants, Qom University of Medical Sciences, Qom, IR Iran
4 Deputy of Research, Kurdistan University of Medical Sciences, Sanandaj, IR Iran
5 Civil Engineering Department, Tarbiat Modarres University, Tehran, IR Iran
6 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: September 01, 2015, 10 (3); e20621
  • Published Online: September 8, 2015
  • Article Type: Research Article
  • Received: May 24, 2014
  • Revised: August 3, 2014
  • Accepted: September 6, 2014
  • DOI: 10.17795/jjnpp-20621

To Cite: Ahmadi Jebelli M, Kalantar E, Maleki A, Izanloo H, Gharibi F, et al. Antimicrobial Activities of the Polypropylene Imine Dendrimer Aginst Bacteria Isolated From Rural Water Resources, Jundishapur J Nat Pharm Prod. 2015 ; 10(3):e20621. doi: 10.17795/jjnpp-20621.

Abstract
Copyright © 2015, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013; 228: 596-613[DOI]
  • 2. Drakopoulou S, Terzakis S, Fountoulakis MS, Mantzavinos D, Manios T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason Sonochem. 2009; 16(5): 629-34[DOI][PubMed]
  • 3. Alp S. [Bacterial resistance to antiseptics and disinfectants]. Mikrobiyol Bul. 2007; 41(1): 155-61[PubMed]
  • 4. Cerf O, Carpentier B, Sanders P. Tests for determining in-use concentrations of antibiotics and disinfectants are based on entirely different concepts: "resistance" has different meanings. Int J Food Microbiol. 2010; 136(3): 247-54[DOI][PubMed]
  • 5. Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006; 8(5): 417[DOI]
  • 6. Wang XF, Zhang SL, Zhu LY, Xie SY, Dong Z, Wang Y, et al. Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J. 2012; 191(1): 115-20[DOI][PubMed]
  • 7. Abbasi AR, Akhbari K, Morsali A. Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem. 2012; 19(4): 846-52[DOI][PubMed]
  • 8. Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, et al. Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pathogens. J Food Saf. 2011; 31(2): 211-8[DOI]
  • 9. Nair MG, Nirmala M, Rekha K, Anukaliani A. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater Lett. 2011; 65(12): 1797-800[DOI]
  • 10. Pinto RJ, Fernandes SC, Freire CS, Sadocco P, Causio J, Neto CP, et al. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr Res. 2012; 348: 77-83[DOI][PubMed]
  • 11. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011; 27(7): 4020-8[DOI][PubMed]
  • 12. Kalantar E, Motlagh M, Lordnejad H, Beiranvand S. The prevalence of bacteria isolated from blood cultures of iranian children and study of their antimicrobial susceptibilities. Jundishapur J Nat Pharm Prod. 2008; 3(1): 1-7
  • 13. Jevprasesphant R. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003; 252(1-2): 263-6[DOI]
  • 14. Neu HC. The crisis in antibiotic resistance. Science. 1992; 257(5073): 1064-73[PubMed]
  • 15. Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007; 8(6): 1807-11[DOI][PubMed]
  • 16. Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009; 5(10): 1148-56[DOI][PubMed]
  • 17. McBain AJ, Ledder RG, Moore LE, Catrenich CE, Gilbert P. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol. 2004; 70(6): 3449-56[DOI][PubMed]
  • 18. Kourai H, Horie T, Takeichi K, Shibasaki I. The antimicrobial characteristics of quaternary ammonium salts and their alkyl chain length. J Antibacterial Antifungal Agents. 1980; 8(5): 9-17
  • 19. Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules. 2000; 1(3): 473-80[PubMed]
  • 20. Salimpour Abkenar S, Malek RMA, Taher S. Effect of poly (propylene imine) dendrimer nano structure on antimicrobial property of cotton fabric. Pejouhesh. 2012; 36(1): 11-8
  • 21. Wang B, Navath RS, Menjoge AR, Balakrishnan B, Bellair R, Dai H, et al. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm. 2010; 395(1-2): 298-308[DOI][PubMed]
  • 22. Chen CZ, Cooper SL. Recent advances in antimicrobial dendrimers. Adv Mater. 2000; 12(11): 843-6[DOI]
  • 23. Murray P, Rosenthal K PM. Med Microbiol. 2009;
  • 24. Wikler MA. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement. 2010;
  • 25. Dabiri H, Aghamohammad S, Goudarzi H, Noori M, Hedayati MA, Ghoreyshiamiri SM. Prevalence and Antibiotic Susceptibility of Campylobacter species Isolated From Chicken and Beef Meat. Int J Enteric Pathog. 2014; 2(2)
  • 26. Bay A, Poorshamsian K, Karimi K, Hashemi M, Maghsodlo B. Determination of Bacteriological and Physiochemical Parameters of Drinking Water of Gorgan city, Iran. Med Lab J. 2011; 5(1): 13-7
  • 27. Hebeish A, Hashem M, Abdel-Rahman A, El-Hilw ZH. Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric. J Appl Polym Sci. 2006; 100(4): 2697-704[DOI]
  • 28. Selahattin A, Kadri. G. , Ramazan C. Effect of zinc on microbial growth. Tr J Med Sci. 1998; 28: 595-7
  • 29. Alikhani MY, Khorasani M, Piri Dogahe H, Shirzad Siboni M. Investigation of Efficiency Ultra Violet Radiation in Disinfection of Escherichia coli in Aquatic Environments: Kinetic Study. J Ardabil Univ Med Sci. 2011; 11(2): 158-65
  • 30. Miranzadeh MB, Rabbani D, Naseri S, Nabizadeh R, Mousavi SGA, Ghadami F. Coliform bacteria removal from contaminated water using nanosilver. Feyz J Kashan Univ Med Sci. 2012; 16(1)
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments