Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Neurological Disorders and Oxidative Toxic Stress: A Role of Metal Nanoparticles

Mehrdokht Mazdeh 1 , Mohammad Ehsan Rahiminejad 2 , Amir Nili-Ahmadabadi 3 and Akram Ranjbar 3 , *
Authors Information
1 Department of Neurology, Hamadan University of Medical Sciences, Hamadan, IR Iran
2 Student Research Committee, Hamadan University of Medical Sciences, Hamadan, IR ‎Iran
3 Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, IR Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: February 01, 2016, 11 (1); e27628
  • Published Online: February 20, 2016
  • Article Type: Review Article
  • Received: February 11, 2015
  • Revised: May 26, 2015
  • Accepted: June 15, 2015
  • DOI: 10.17795/jjnpp-27628

To Cite: Mazdeh M, Rahiminejad M E, Nili-Ahmadabadi A, Ranjbar A. Neurological Disorders and Oxidative Toxic Stress: A Role of Metal Nanoparticles, Jundishapur J Nat Pharm Prod. 2016 ; 11(1):e27628. doi: 10.17795/jjnpp-27628.

Abstract
Copyright © 2016, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Footnote
References
  • 1. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004; 2(1): 3[DOI][PubMed]
  • 2. Fedlheim DL, Foss CA. Metal nanoparticles: synthesis, characterization, and applications. 2001;
  • 3. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004; 61(9): 727-8[DOI][PubMed]
  • 4. Sarkar A, Ghosh M, Sil PC. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol. 2014; 14(1): 730-43[PubMed]
  • 5. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004; 10(6)-7[PubMed]
  • 6. Ranjbar A, Ghasemi H, Rostampour F. The Role of Oxidative Stress in Metals Toxicity; Mitochondrial Dysfunction as a Key Player. Galen Med J. 2014; 3(1): 2-13
  • 7. Ranjbar A, Ghahremani MH, Sharifzadeh M, Golestani A, Ghazi-Khansari M, Baeeri M, et al. Protection by pentoxifylline of malathion-induced toxic stress and mitochondrial damage in rat brain. Hum Exp Toxicol. 2010; 29(10): 851-64[DOI][PubMed]
  • 8. Clement MV, Pervaiz S. Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic Res. 1999; 30(4): 247-52[PubMed]
  • 9. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 408(6809): 239-47[DOI][PubMed]
  • 10. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007; 47: 143-83[DOI][PubMed]
  • 11. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995; 18(4): 775-94[PubMed]
  • 12. Ristow M. Oxidative metabolism in cancer growth. Curr Opin Clin Nutr Metab Care. 2006; 9(4): 339-45[DOI][PubMed]
  • 13. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007; 292(1)-36[DOI][PubMed]
  • 14. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006; 533(1-3): 222-39[DOI][PubMed]
  • 15. Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010; 2: 12[DOI][PubMed]
  • 16. Ikonomidou C, Kaindl AM. Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal. 2011; 14(8): 1535-50[DOI][PubMed]
  • 17. Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011; 5(6): 4476-89[DOI][PubMed]
  • 18. Schroder U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res. 1996; 710(1-2): 121-4[PubMed]
  • 19. Burkhart A, Azizi M, Thomsen MS, Thomsen LB, Moos T. Accessing targeted nanoparticles to the brain: the vascular route. Curr Med Chem. 2014; 21(36): 4092-9[PubMed]
  • 20. Bondy SC. Neurotoxicity of Nanoparticles. Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology.. 2014; : 111-20
  • 21. Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009; 61(6): 467-77[DOI][PubMed]
  • 22. Ranjbar A, Ataie Z, Khajavi F, Ghasemi H. Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat. Nanomed. J. 2014; 1(3): 205-10
  • 23. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect. 2004; 112(10): 1058-62[PubMed]
  • 24. Ahamed M, Alsalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta. 2010; 411(23-24): 1841-8[DOI][PubMed]
  • 25. Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci. 2011; 12(9): 6267-80[DOI][PubMed]
  • 26. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012; 2012: 428010[DOI][PubMed]
  • 27. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004; 3(3): 205-14[DOI][PubMed]
  • 28. Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 2014; 42 Suppl 3-52[DOI][PubMed]
  • 29. Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bacha RS. Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev. 2011; 2011: 467180[DOI][PubMed]
  • 30. Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol. 2007; 84(4): 415-30[DOI][PubMed]
  • 31. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013; 10: 15[DOI][PubMed]
  • 32. Periasamy VS, Athinarayanan J, Al-Hadi AM, Juhaimi FA, Mahmoud MH, Alshatwi AA. Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ Toxicol Pharmacol. 2015; 39(1): 176-86[DOI][PubMed]
  • 33. Ramsden CS, Smith TJ, Shaw BJ, Handy RD. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology. 2009; 18(7): 939-51[DOI][PubMed]
  • 34. Wu J, Sun J, Xue Y. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett. 2010; 199(3): 269-76[DOI][PubMed]
  • 35. Cui Y, Gong X, Duan Y, Li N, Hu R, Liu H, et al. Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater. 2010; 183(1-3): 874-80[DOI][PubMed]
  • 36. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011; 25(1): 231-41[DOI][PubMed]
  • 37. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008; 83(5): 761-9[DOI][PubMed]
  • 38. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010; 242(3): 263-9[DOI][PubMed]
  • 39. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009; 27(1): 76-83[DOI][PubMed]
  • 40. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1): 95-101[DOI][PubMed]
  • 41. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012; 30(10): 499-511[DOI][PubMed]
  • 42. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles - nanoparticle or silver ion? Toxicol Lett. 2012; 208(3): 286-92[DOI][PubMed]
  • 43. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011; 201(1): 92-100[DOI][PubMed]
  • 44. Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett. 2009; 187(1): 15-21[DOI][PubMed]
  • 45. Heidary T, Shayesteh FK, Ghasemi H, Zijoud SMH, Ranjbar A. Effects of silver nanoparticle (Ag NP) on oxidative stress, liver function in rat: hepatotoxic or hepatoprotective? ssues Biol Sci Pharm Res. 2014; 2(5): 40-4
  • 46. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011; 35(3): 804-17[DOI][PubMed]
  • 47. Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res. 2011; 726(2): 129-35[DOI][PubMed]
  • 48. Hau SK, Yip HL, Baek NS, Zou J, O’Malley K, Jen AKY. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett. 2008; 92(25): 253301[DOI]
  • 49. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009; 185(3): 211-8[PubMed]
  • 50. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007; 90(213902): 2139021-3[DOI][PubMed]
  • 51. Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol. 2011; 7(1): 98-9[PubMed]
  • 52. Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res. 2012; 745(1-2): 84-91[DOI][PubMed]
  • 53. Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol. 2010; 100(2): 151-9[DOI][PubMed]
  • 54. Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui MK, AlSalhi MS, et al. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine. 2011; 7(6): 904-13[DOI][PubMed]
  • 55. Rahman MM, Khan SB, Aslam Jamal MF, Aisiri AM. Nanomaterials. 2011;
  • 56. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008; 108(6): 2064-110[DOI][PubMed]
  • 57. Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine. 2010; 5: 983-9[DOI][PubMed]
  • 58. Zhu MT, Wang Y, Feng WY, Wang B, Wang M, Ouyang H, et al. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J Nanosci Nanotechnol. 2010; 10(12): 8584-90[PubMed]
  • 59. Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 2004; 76(2): 232-43[DOI][PubMed]
  • 60. Geppert M, Hohnholt MC, Thiel K, Nurnberger S, Grunwald I, Rezwan K, et al. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology. 2011; 22(14): 145101[DOI][PubMed]
  • 61. Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res. 2014; 39(9): 1648-60[DOI][PubMed]
  • 62. Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, et al. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology. 2014; 8(6): 663-75[DOI][PubMed]
  • 63. Alarifi S, Ali D, Alkahtani S, Alhader MS. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014; 159(1-3): 416-24[DOI][PubMed]
  • 64. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012; 112(4): 2323-38[DOI][PubMed]
  • 65. Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A, et al. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther. 2006; 318(1): 108-16[DOI][PubMed]
  • 66. Glat M, Skaat H, Menkes-Caspi N, Margel S, Stern EA. Age-dependent effects of microglial inhibition in vivo on Alzheimer's disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J Nanobiotechnology. 2013; 11: 32[DOI][PubMed]
  • 67. Hohnholt MC, Dringen R. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanopart Res. 2011; 13(12): 6761-74[DOI]
  • 68. Hohnholt MC, Geppert M, Dringen R. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater. 2011; 7(11): 3946-54[DOI][PubMed]
  • 69. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010; 345(1-2): 91-104[DOI][PubMed]
  • 70. Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013; 34: 243-53[DOI][PubMed]
  • 71. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012; 46(3): 1819-27[DOI][PubMed]
  • 72. An L, Liu S, Yang Z, Zhang T. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett. 2012; 213(2): 220-7[DOI][PubMed]
  • 73. An L, Yang Z, Zhang T. Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in Wistar rats. Neurobiol Learn Mem. 2013; 100: 18-24[DOI][PubMed]
  • 74. Bulcke F, Thiel K, Dringen R. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology. 2014; 8(7): 775-85[DOI][PubMed]
  • 75. Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology. 2010; 4(2): 150-60[DOI][PubMed]
  • 76. Perreault F, Pedroso Melegari S, Henning da Costa C, de Oliveira Franco Rossetto AL, Popovic R, Gerson Matias W. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ. 2012; 441: 117-24[DOI][PubMed]
  • 77. Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noel F, et al. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale. 2012; 4(22): 7168-84[DOI][PubMed]
  • 78. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun. 2010; 396(2): 578-83[DOI][PubMed]
  • 79. Sharma AK, Mehta AK, Rathor N, Chalawadi Hanumantappa MK, Khanna N, Bhattacharya SK. Melatonin attenuates cognitive dysfunction and reduces neural oxidative stress induced by phosphamidon. Fundam Clin Pharmacol. 2013; 27(2): 146-51[DOI][PubMed]
  • 80. Pradhan A, Schlosser D, Seena S, Helm S, Gerth K, Krauss GJ, et al. Copper oxide nanoparticles induce oxidative stress, DNA strand breaks and laccase activity in aquatic fungi. Univ Minho. 2011;
  • 81. Djuričić B, Pickering S. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders. J Eur Ceram Soc. 1999; 19(11): 1925-34[DOI]
  • 82. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009; 5(24): 2848-56[DOI][PubMed]
  • 83. Goharshadi EK, Samiee S, Nancarrow P. Fabrication of cerium oxide nanoparticles: characterization and optical properties. J Colloid Interface Sci. 2011; 356(2): 473-80[DOI][PubMed]
  • 84. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008; 2(10): 2121-34[DOI][PubMed]
  • 85. Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 2006; 342(1): 86-91[DOI][PubMed]
  • 86. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012; 6(5): 3767-75[DOI][PubMed]
  • 87. Dowding JM, Lubitz S, Karakoti AS, Kim A, Seal S, Ellisman M, et al. Cerium Oxide Nanoparticles Prevent Nitrosative Stress in Neuronal Cell Culture Model. Free Radic Biol Med. 2010; 49[DOI]
  • 88. Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A. The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol. 2004; 198(3): 458-67[DOI][PubMed]
  • 89. Nandi D, Patra RC, Swarup D. Effect of cysteine, methionine, ascorbic acid and thiamine on arsenic-induced oxidative stress and biochemical alterations in rats. Toxicology. 2005; 211(1-2): 26-35[DOI][PubMed]
  • 90. Kaushik G, Satya S, Naik SN. Green tea: protective action against oxidative damage induced by xenobiotics. Med J Nutrition Metab. 2010; 4(1): 11-31[DOI]
  • 91. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001; 1(6): 529-39[PubMed]
  • 92. Basiri S, Esmaily H, Vosough-Ghanbari S, Mohammadirad A, Yasa N, Abdollahi M. Improvement by Satureja khuzestanica essential oil of malathion-induced red blood cells acetylcholinesterase inhibition and altered hepatic mitochondrial glycogen phosphorylase and phosphoenolpyruvate carboxykinase activities. Pestic Biochem Physiol. 2007; 89(2): 124-9[DOI]
  • 93. Agrawal A, Sharma B. International Journal of Biological & Medical Research. Int J Biol Med Res. 2010; 1(3): 90-104
  • 94. Tavakol HS, Akram R, Azam S, Nahid Z. Protective effects of green tea on antioxidative biomarkers in chemical laboratory workers. Toxicol Ind Health. 2015; 31(9): 862-7[DOI][PubMed]
  • 95. Zhang XH, Zhang X, Wang XC, Jin LF, Yang ZP, Jiang CX, et al. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers. BMC Public Health. 2011; 11: 224[DOI][PubMed]
  • 96. Elswaifi SF, Palmieri JR, Hockey KS, Rzigalinski BA. Antioxidant nanoparticles for control of infectious disease. Infect Disord Drug Targets. 2009; 9(4): 445-52[PubMed]
  • 97. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006; 97(6): 1634-58[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments