Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

The Effect of Rapamycin on Oxidative Stress in MCF-7 and MDA MB-231 Human Breast Cancer Cell Lines

Hadi Kalantar 1 , Masoumeh Sabetkasaei 1 , Ali Shahriari 2 , Mostafa Haj Molla Hoseini 3 , Siavash Mansouri 4 , Mojtaba Kalantar 5 , Azin Kalantari 6 , Yalda Khazaei Poul 1 , Farazaneh Labibi 3 and Taraneh Moini-Zanjani 1 , *
Authors Information
1 Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Department of Biochemistry, School of Veterinary Medicine, Shahid Chamran University, Ahvaz, IR Iran
3 Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
4 Department of Internal of Medicine, Faculty of Medicine, Saarland University of Medical Center, Homburg, Germany
5 Department of Toxicology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
6 Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei korut, Debrecen, Hungary
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: August 01, 2016, 11 (3); e38177
  • Published Online: August 28, 2016
  • Article Type: Research Article
  • Received: April 3, 2016
  • Revised: May 14, 2016
  • Accepted: May 24, 2016
  • DOI: 10.17795/jjnpp-38177

To Cite: Kalantar H, Sabetkasaei M, Shahriari A, Haj Molla Hoseini M, Mansouri S, et al. The Effect of Rapamycin on Oxidative Stress in MCF-7 and MDA MB-231 Human Breast Cancer Cell Lines, Jundishapur J Nat Pharm Prod. 2016 ; 11(3):e38177. doi: 10.17795/jjnpp-38177.

Abstract
Copyright © 2016, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Cuzick J, Wickerham L, Powles T. Differing Perspectives on Breast Cancer Chemoprevention. JAMA Oncol. 2016; 2(2): 276-7[DOI][PubMed]
  • 2. Timur M, Akbas SH, Ozben T. The effect of Topotecan on oxidative stress in MCF-7 human breast cancer cell line. Acta Biochim Pol. 2005; 52(4): 897-902[PubMed]
  • 3. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966; 16(2): 359-64[PubMed]
  • 4. Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994; 233: 346-57[PubMed]
  • 5. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1): 70-7[PubMed]
  • 6. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996; 239(1): 70-6[DOI][PubMed]
  • 7. Garber K. Rapamycin's resurrection: a new way to target the cancer cell cycle. J Natl Cancer Inst. 2001; 93(20): 1517-9[PubMed]
  • 8. Hidalgo M, Rowinsky E, Erlichman C, Drengler R, Marshall B, Adjei A. Phase I and pharmacological study of CCI-779, a cell cycle inhibitor. 2000;
  • 9. Menon S, Manning BD. Common corruption of the mTOR signaling network in human tumors. Oncogene. 2008; 27 Suppl 2: 43-51[DOI][PubMed]
  • 10. Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene. 2000; 19(56): 6680-6[DOI][PubMed]
  • 11. Hileman EO, Liu J, Albitar M, Keating MJ, Huang P. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol. 2004; 53(3): 209-19[DOI][PubMed]
  • 12. Glasauer A, Chandel NS. Targeting antioxidants for cancer therapy. Biochem Pharmacol. 2014; 92(1): 90-101[DOI][PubMed]
  • 13. De Luca A, Sanna F, Sallese M, Ruggiero C, Grossi M, Sacchetta P, et al. Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype. Proc Natl Acad Sci U S A. 2010; 107(43): 18628-33[DOI][PubMed]
  • 14. Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, et al. Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog. 2004; 39(2): 103-13[DOI][PubMed]
  • 15. Qin Y, Pan X, Tang TT, Zhou L, Gong XG. Anti-proliferative effects of the novel squamosamide derivative (FLZ) on HepG2 human hepatoma cells by regulating the cell cycle-related proteins are associated with decreased Ca(2+)/ROS levels. Chem Biol Interact. 2011; 193(3): 246-53[DOI][PubMed]
  • 16. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010; 107(19): 8788-93[DOI][PubMed]
  • 17. Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998; 273(25): 15366-72
  • 18. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature. 2003; 423(6941): 769-73[DOI][PubMed]
  • 19. Dai ZJ, Gao J, Ma XB, Kang HF, Wang BF, Lu WF, et al. Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy. Int J Mol Sci. 2012; 14(1): 273-85[DOI][PubMed]
  • 20. Raje N, Kumar S, Hideshima T, Ishitsuka K, Chauhan D, Mitsiades C, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004; 104(13): 4188-93[DOI][PubMed]
  • 21. Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer. 2001; 8(3): 249-58[PubMed]
  • 22. Tengku Din TA, Seeni A, Khairi WN, Shamsuddin S, Jaafar H. Effects of rapamycin on cell apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev. 2014; 15(24): 10659-63[PubMed]
  • 23. Shin YJ, Cho DY, Chung TY, Han SB, Hyon JY, Wee WR. Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells. Curr Eye Res. 2011; 36(12): 1116-22[DOI][PubMed]
  • 24. Neklesa TK, Davis RW. Superoxide anions regulate TORC1 and its ability to bind Fpr1:rapamycin complex. Proc Natl Acad Sci U S A. 2008; 105(39): 15166-71[DOI][PubMed]
  • 25. Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem. 2005; 280(21): 20558-64[DOI][PubMed]
  • 26. Huang C, Li J, Ke Q, Leonard SS, Jiang BH, Zhong XS, et al. Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res. 2002; 62(20): 5689-97[PubMed]
  • 27. Bustamante J, Galleano M, Medrano EE, Boveris A. Adriamycin effects on hydroperoxide metabolism and growth of human breast tumor cells. Breast Cancer Res Treat. 1990; 17(2): 145-53[PubMed]
  • 28. Sarvazyan NA, Askari A, Huang WH. Effects of doxorubicin on cardiomyocytes with reduced level of superoxide dismutase. Life Sci. 1995; 57(10): 1003-10[PubMed]
  • 29. Russo A, Mitchell JB. Potentiation and protection of doxorubicin cytotoxicity by cellular glutathione modulation. Cancer Treat Rep. 1985; 69(11): 1293-6[PubMed]
  • 30. Kofman AE, McGraw MR, Payne CJ. Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging (Albany NY). 2012; 4(4): 279-89[DOI][PubMed]
  • 31. Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002; 3(5): 420-5[DOI][PubMed]
  • 32. Chen Y, Zheng Y, Foster DA. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene. 2003; 22(25): 3937-42[DOI][PubMed]
  • 33. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J, et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res. 2004; 10(3): 1013-23[PubMed]
  • 34. Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res. 2001; 61(8): 3373-81[PubMed]
  • 35. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014; 19(3): 373-9[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments