Jundishapur Journal of Natural Pharmaceutical Products

Published by: Neoscriber Demo Publisher
Crossmark

Hydroalcoholic Extract of Zingiber officinale Improves STZ-Induced Diabetic Nephropathy in Rats by Reduction of NF-κB Activation

Seyede-Arefe Payami 1 , Hossein Babaahmadi-Rezaei 1 , Mohammad-Ali Ghaffari 2 , Esrafil Mansouri 3 and Ghorban Mohammadzadeh 4 , *
Authors Information
1 Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Department of Clinical Biochemistry, Cellular and molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4 Department of Clinical Biochemistry, Hyperlipidemia Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: 14 (2); e55063
  • Published Online: May 13, 2019
  • Article Type: Research Article
  • Received: June 16, 2017
  • Revised: January 29, 2018
  • Accepted: March 11, 2018
  • DOI: 10.5812/jjnpp.55063

To Cite: Payami S , Babaahmadi-Rezaei H, Ghaffari M , Mansouri E , Mohammadzadeh G. Hydroalcoholic Extract of Zingiber officinale Improves STZ-Induced Diabetic Nephropathy in Rats by Reduction of NF-κB Activation, Jundishapur J Nat Pharm Prod. Online ahead of Print ; 14(2):e55063. doi: 10.5812/jjnpp.55063.

Abstract
Copyright © 2019, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14. doi: 10.1016/j.diabres.2009.10.007. [PubMed: 19896746].
  • 2. Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes. 2014;5(3):393-8. doi: 10.4239/wjd.v5.i3.393. [PubMed: 24936261]. [PubMed Central: PMC4058744].
  • 3. Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, et al. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19(10):2505-12. doi: 10.1093/ndt/gfh207. [PubMed: 15280531].
  • 4. Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, et al. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010;21(8):1254-62. doi: 10.1681/ASN.2010020218. [PubMed: 20651166].
  • 5. Brosius FC, Khoury CC, Buller CL, Chen S. Abnormalities in signaling pathways in diabetic nephropathy. Expert Rev Endocrinol Metab. 2010;5(1):51-64. doi: 10.1586/eem.09.70. [PubMed: 20224802]. [PubMed Central: PMC2834210].
  • 6. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139-52. doi: 10.1042/CS20120198. [PubMed: 23075333].
  • 7. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79(8 Suppl):1527-34. doi: 10.1902/jop.2008.080246. [PubMed: 18673007].
  • 8. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1-14. doi: 10.4196/kjpp.2014.18.1.1. [PubMed: 24634591]. [PubMed Central: PMC3951818].
  • 9. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319-31. doi: 10.1161/CIRCRESAHA.110.217117. [PubMed: 20431074]. [PubMed Central: PMC2877591].
  • 10. Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med. 2009;11. e13. doi: 10.1017/S1462399409001057. [PubMed: 19397838].
  • 11. Li Y, Tran VH, Duke CC, Roufogalis BD. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evid Based Complement Alternat Med. 2012;2012:516870. doi: 10.1155/2012/516870. [PubMed: 23243452]. [PubMed Central: PMC3519348].
  • 12. Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int J Prev Med. 2013;4(Suppl 1):S36-42. [PubMed: 23717767]. [PubMed Central: PMC3665023].
  • 13. Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res. 2006;20(9):764-72. doi: 10.1002/ptr.1952. [PubMed: 16807883].
  • 14. Aktan F, Henness S, Tran VH, Duke CC, Roufogalis BD, Ammit AJ. Gingerol metabolite and a synthetic analogue CapsarolTM inhibit macrophage NF-kappaB-mediated iNOS gene expression and enzyme activity. Planta Med. 2006;72(8):727-34. doi: 10.1055/s-2006-931588. [PubMed: 16732525].
  • 15. Tzeng TF, Liou SS, Chang CJ, Liu IM. Zerumbone, a tropical ginger sesquiterpene, ameliorates streptozotocin-induced diabetic nephropathy in rats by reducing the hyperglycemia-induced inflammatory response. Nutr Metab (Lond). 2013;10(1):64. doi: 10.1186/1743-7075-10-64. [PubMed: 24499158]. [PubMed Central: PMC3818326].
  • 16. Azwanida NN. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015;4(3). doi: 10.4172/2167-0412.1000196.
  • 17. Shalaby MA, Hamowieh AR. Safety and efficacy of Zingiber officinale roots on fertility of male diabetic rats. Food Chem Toxicol. 2010;48(10):2920-4. doi: 10.1016/j.fct.2010.07.028. [PubMed: 20667464].
  • 18. Nammi S, Sreemantula S, Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol. 2009;104(5):366-73. doi: 10.1111/j.1742-7843.2008.00362.x. [PubMed: 19413656].
  • 19. Sharma M, Shukla S. Hypoglycaemic effect of ginger. J Res Ind Yoga Homeop. 1977;12:127-30.
  • 20. Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2004;56(1):101-5. doi: 10.1211/0022357022403. [PubMed: 14980006].
  • 21. Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr. 2006;96(4):660-6. [PubMed: 17010224].
  • 22. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr. 2012;108(7):1194-201. doi: 10.1017/S0007114511006635. [PubMed: 22152092].
  • 23. Singh AB, Singh N, Maurya R, Srivastava AK. Anti-hyperglycaemic, lipid lowering and anti-oxidant properties of [6]-gingerol in db/db mice. Int J Med Med Sci. 2009;1(12):536-44.
  • 24. Li Y, Tran VH, Duke CC, Roufogalis BD. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Med. 2012;78(14):1549-55. doi: 10.1055/s-0032-1315041. [PubMed: 22828920].
  • 25. Sekiya K, Ohtani A, Kusano S. Enhancement of insulin sensitivity in adipocytes by ginger. Biofactors. 2004;22(1-4):153-6. [PubMed: 15630272].
  • 26. Noipha K, Ratanachaiyavong S, Ninla-Aesong P. Enhancement of glucose transport by selected plant foods in muscle cell line L6. Diabetes Res Clin Pract. 2010;89(2):e22-6. doi: 10.1016/j.diabres.2010.04.021. [PubMed: 20510475].
  • 27. Saraswat M, Suryanarayana P, Reddy PY, Patil MA, Balakrishna N, Reddy GB. Antiglycating potential of Zingiber officinalis and delay of diabetic cataract in rats. Mol Vis. 2010;16:1525-37. [PubMed: 20806076]. [PubMed Central: PMC2925903].
  • 28. Donate-Correa J, Martin-Nunez E, Muros-de-Fuentes M, Mora-Fernandez C, Navarro-Gonzalez JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015;2015:948417. doi: 10.1155/2015/948417. [PubMed: 25785280]. [PubMed Central: PMC4345080].
  • 29. Eleazu CO, Iroaganachi M, Okafor PN, Ijeh II, Eleazu KC. Ameliorative potentials of ginger (Z. officinale Roscoe) on relative organ weights in Streptozotocin induced diabetic rats. Int J Biomed Sci. 2013;9(2):82-90. [PubMed: 23847458]. [PubMed Central: PMC3708272].
  • 30. Lee YJ, Kang DG, Kim JS, Lee HS. Effect of Buddleja officinalis on high-glucose-induced vascular inflammation in human umbilical vein endothelial cells. Exp Biol Med (Maywood). 2008;233(6):694-700. doi: 10.3181/0710-RM-286. [PubMed: 18408144].
  • 31. Grzanna R, Lindmark L, Frondoza CG. Ginger--an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2):125-32. doi: 10.1089/jmf.2005.8.125. [PubMed: 16117603].
  • 32. Al-Qattan KK, Thomson M, Ali M. Garlic (Allium sativum) and ginger (Zingiber officinale) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats. Eur J Clin Nutr Metabol. 2008;3(2):e62-71. doi: 10.1016/j.eclnm.2007.12.001.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments