Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Application of Genetically Engineered Dioxygenase Producing Pseudomonas putida on Decomposition of Oil from Spiked Soil

Gashtasb Mardani 1 , Amir Hossein Mahvi 1 , 2 , * , Morteza Hashemzadeh-Chaleshtori 3 , Simin Naseri 1 , 4 , Mohammad Hadi Dehghani 1 and Payam Ghasemi-Dehkordi 3
Authors Information
1 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
2 Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, IR Iran
3 Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
4 Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: August 2017, 12 (3 (Supp)); e64313
  • Published Online: August 31, 2017
  • Article Type: Research Article
  • Received: April 4, 2016
  • Revised: January 18, 2017
  • Accepted: February 8, 2017
  • DOI: 10.5812/jjnpp.64313

To Cite: Mardani G, Mahvi A H, Hashemzadeh-Chaleshtori M, Naseri S, Dehghani M H, et al. Application of Genetically Engineered Dioxygenase Producing Pseudomonas putida on Decomposition of Oil from Spiked Soil, Jundishapur J Nat Pharm Prod. 2017 ; 12(3 (Supp)):e64313. doi: 10.5812/jjnpp.64313.

Abstract
Copyright © 2017, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011; 9(3): 177-92[DOI][PubMed]
  • 2. Fernandez M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E. Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol. 2012; 78(15): 5104-10[DOI][PubMed]
  • 3. Thapa B, Kc AK, Ghimire A. A Review On Bioremediation Of Petroleum Hydrocarbon Contaminants In Soil. Kathmandu Univ J Sci Engin Technol. 2012; 8(1)[DOI]
  • 4. Atlas RM, Hazen TC. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol. 2011; 45(16): 6709-15[DOI][PubMed]
  • 5. Ebrahimi M, Sarikhani MR, Fallah R. Assessment of biodegradation efficiency of some isolated bacteria from oilcontaminated sites in solid and liquid media containing oil-compounds. Int Res J Appl Basic Sci. 2012; 3(1): 138-47
  • 6. Gailiute I, Rackauskiene G, Grigiskis S. Assessment of biodegradation efficiency of some isolated bacteria from oil contaminated sites in solid and liquid media containing oil-compounds. Biologija. 2014; 60(3): 134-43
  • 7. Thomas BS, Okamoto K, Bankowski MJ, Seto TB. A Lethal Case of Pseudomonas putida Bacteremia Due to Soft Tissue Infection. Infect Dis Clin Pract (Baltim Md). 2013; 21(3): 147-213[DOI][PubMed]
  • 8. Molina L, Udaondo Z, Duque E, Fernandez M, Molina-Santiago C, Roca A, et al. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital. PLoS One. 2014; 9(1)[DOI][PubMed]
  • 9. Zhao HP, Liang SH, Yang X. Isolation and characterization of catechol 2,3-dioxygenase genes from phenanthrene degraders Sphingomonas, sp. ZP1 and Pseudomonas sp. ZP2. Environ Technol. 2011; 33(15-16): 1895-901[PubMed]
  • 10. Mesquita NC, Dyszy FH, Kumagai PS, Araujo AP, Costa-Filho AJ. Amphipatic molecules affect the kinetic profile of Pseudomonas putida chlorocatechol 1,2-dioxygenase. Eur Biophys J. 2013; 42(8): 655-60[DOI][PubMed]
  • 11. Singh D, Kumari A, Ramanathan G. 3-Nitrotoluene dioxygenase from Diaphorobacter sp. strains: cloning, sequencing and evolutionary studies. Biodegradation. 2014; 25(4): 479-92[DOI][PubMed]
  • 12. Jiang Y, Yang X, Liu B, Zhao H, Cheng Q, Cai B. Catechol 2,3-dioxygenase from Pseudomonas sp. strain ND6: gene sequence and enzyme characterization. Biosci Biotechnol Biochem. 2004; 68(8): 1798-800[DOI][PubMed]
  • 13. Chang SY, Liu XG, Ren BQ, Liu B, Zhang K, Zhang H, et al. Effects of LB broth, naphthalene concentration, and acetone on the naphthalene degradation activities by Pseudomonas putida G7. Water Environ Res. 2015; 87(1): 61-7[PubMed]
  • 14. Hedlund BP, Geiselbrecht AD, Staley JT. Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol Lett. 2001; 201(1): 47-51[PubMed]
  • 15. Coitinho JB, Costa DM, Guimaraes SL, de Goes AM, Nagem RA. Expression, purification and preliminary crystallographic studies of NahF, a salicylaldehyde dehydrogenase from Pseudomonas putida G7 involved in naphthalene degradation. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012; 68: 93-7[DOI][PubMed]
  • 16. Arbabi M, Nasseri S, Chimezie A. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in petroleum contaminated soils. Iran J Chem Chem Engin. 2009; 28(3): 53-9
  • 17. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed. 2015; 5(3): 182-9[DOI]
  • 18. Mahvi AH, Mardani G. Determination of phenanthrene in urban runoff of Tehran, capital of Iran. J Environ Health Sci Engin. 2005; 2(2): 5-11
  • 19. Nasseri S, Kalantary RR, Nourieh N, Naddafi K, Mahvi AH, Baradaran N. Influence of bioaugmentation in biodegradation of PAHs-contaminated soil in bio-slurry phase reactor. Iran J Environ Health Sci Engin. 2010; 7(3): 199
  • 20. Lin YC, Hsu KH, Chen CB. Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends. Energy. 2011; 36(1): 241-8[DOI]
  • 21. Mahvi A, Mardani G, Ghasemi-Dehkordi P, Saffari-Chaleshtori J, Hashemzadeh-Chaleshtori M, Allahbakhshian-Farsani M, et al. Effects of Phenanthrene and Pyrene on Cytogenetic Stability of Human Dermal Fibroblasts Using Alkaline Comet Assay Technique. Proc Nat Acad Sci India Section B Biol Sci. 2015; 85(4): 1055-63[DOI]
  • 22. Arun K, Ashok M, Rajesh S. Crude oil PAH constitution, degradation pathway and associated bioremediation microflora: an overview. Int J Environ Sci. 2011; 1(7): 1420
  • 23. Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007; 5(4): 169-95[DOI][PubMed]
  • 24. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact. 2004; 17(1): 6-15[DOI][PubMed]
  • 25. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol. 2015; 46(1): 7-21[DOI][PubMed]
  • 26. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. third. 2001;
  • 27. Brinch UC, Ekelund F, Jacobsen CS. Method for spiking soil samples with organic compounds. Appl Environ Microbiol. 2002; 68(4): 1808-16[PubMed]
  • 28. Mitra A, Mukhopadhyay S. Biofilm mediated decontamination of pollutants from the environment. AIMS Bioengin. 2016; 3(1): 44-59[DOI]
  • 29. Raghavan PUM, Vivekanandan M. Bioremediation of oil-spilled sites through seeding of naturally adapted Pseudomonas putida. Int Biodeteriorat Biodegrad. 1999; 44(1): 29-32
  • 30. Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S. Degradation of Polyaromatic Hydrocarbons by Fungi Isolated from Soil in Japan. Polycyclic Arom Compounds. 2014; 35(1): 120-8[DOI]
  • 31. Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol. 2007; 98(7): 1339-45[DOI][PubMed]
  • 32. Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut. 2009; 157(3): 763-71[DOI][PubMed]
  • 33. de Lipthay JR, Barkay T, Sorensen SJ. Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol. 2001; 35(1): 75-84[PubMed]
  • 34. Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, et al. Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol. 2012; 28(9): 2783-90[DOI][PubMed]
  • 35. Zhou Y, Wei J, Shao N, Wei D. Construction of a genetically engineered microorganism for phenanthrene biodegradation. J Basic Microbiol. 2013; 53(2): 188-94[DOI][PubMed]
  • 36. Samin G, Pavlova M, Arif MI, Postema CP, Damborsky J, Janssen DB. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation. Appl Environ Microbiol. 2014; 80(17): 5467-76[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments