Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Molecular Docking and PLIF Studies of Novel Tacrine-Naphtoquinone Hybrids Based on Multi-Target-Directed Ligand Approach for Alzheimer’s Disease

Masood Fereidoonnezhad 1 , Azar Mostoufi 1 , * , Samaneh Zali 1 , Maryam Eskandari 1 , Davoud Afshar 1 and Fariba Aliyan 1
Authors Information
1 Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: May 2018, 13 (2); e65048
  • Published Online: December 19, 2017
  • Article Type: Research Article
  • Received: May 28, 2016
  • Revised: December 12, 2016
  • Accepted: January 9, 2017
  • DOI: 10.5812/jjnpp.65048

To Cite: Fereidoonnezhad M, Mostoufi A, Zali S, Eskandari M, Afshar D, et al. Molecular Docking and PLIF Studies of Novel Tacrine-Naphtoquinone Hybrids Based on Multi-Target-Directed Ligand Approach for Alzheimer’s Disease, Jundishapur J Nat Pharm Prod. 2018 ; 13(2):e65048. doi: 10.5812/jjnpp.65048.

Abstract
Copyright © 2017, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results and Discussion
4. Conclusions
Acknowledgements
References
  • 1. Hashimoto M, Rockenstein E, Crews L, Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med. 2003;4(1-2):21-36. doi: 10.1385/NMM:4:1-2:21. [PubMed: 14528050].
  • 2. Soler-Lopez M, Badiola N, Zanzoni A, Aloy P. Towards Alzheimer's root cause: ECSIT as an integrating hub between oxidative stress, inflammation and mitochondrial dysfunction. Hypothetical role of the adapter protein ECSIT in familial and sporadic Alzheimer's disease pathogenesis. Bioessays. 2012;34(7):532-41. doi: 10.1002/bies.201100193. [PubMed: 22513506].
  • 3. Munoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer's disease. Curr Med Chem. 2008;15(24):2433-55. [PubMed: 18855672].
  • 4. Wolfe MS. Secretase targets for Alzheimer's disease: identification and therapeutic potential. J Med Chem. 2001;44(13):2039-60. [PubMed: 11405641].
  • 5. Shanks M, Kivipelto M, Bullock R, Lane R. Cholinesterase inhibition: is there evidence for disease-modifying effects? Curr Med Res Opin. 2009;25(10):2439-46. doi: 10.1185/03007990903209332. [PubMed: 19678754].
  • 6. Chakrabarti E, Ghosh S, Sadhukhan S, Sayre L, Tochtrop GP, Smith JD. Synthesis and biological evaluation of analogues of a novel inhibitor of beta-amyloid secretion. J Med Chem. 2010;53(14):5302-19. doi: 10.1021/jm100308g. [PubMed: 20568779].
  • 7. Faghih Z, Fereidoonnezhad M, Tabaei SMH, Rezaei Z, Zolghadr AR. The binding of small carbazole derivative (P7C3) to protofibrils of the Alzheimer’s disease and β-secretase: Molecular dynamics simulation studies. Chem Phys. 2015;459:31-9. doi: 10.1016/j.chemphys.2015.07.026.
  • 8. Hamulakova S, Janovec L, Hrabinova M, Spilovska K, Korabecny J, Kristian P, et al. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. J Med Chem. 2014;57(16):7073-84. doi: 10.1021/jm5008648. [PubMed: 25089370].
  • 9. Fernandez-Bachiller MI, Perez C, Monjas L, Rademann J, Rodriguez-Franco MI. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer's disease, with cholinergic, antioxidant, and beta-amyloid-reducing properties. J Med Chem. 2012;55(3):1303-17. doi: 10.1021/jm201460y. [PubMed: 22243648].
  • 10. Thiratmatrakul S, Yenjai C, Waiwut P, Vajragupta O, Reubroycharoen P, Tohda M, et al. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem. 2014;75:21-30. doi: 10.1016/j.ejmech.2014.01.020. [PubMed: 24508831].
  • 11. Nepovimova E, Uliassi E, Korabecny J, Pena-Altamira LE, Samez S, Pesaresi A, et al. Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-beta aggregation and to exert anticholinesterase and antioxidant effects. J Med Chem. 2014;57(20):8576-89. doi: 10.1021/jm5010804. [PubMed: 25259726].
  • 12. Johnson G, Moore SW. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr Pharm Des. 2006;12(2):217-25. [PubMed: 16454738].
  • 13. Hui AL, Chen Y, Zhu SJ, Gan CS, Pan J, Zhou A. Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med Chem Res. 2014;23(7):3546-57. doi: 10.1007/s00044-014-0931-2.
  • 14. Minarini A, Milelli A, Simoni E, Rosini M, Bolognesi ML, Marchetti C, et al. Multifunctional tacrine derivatives in Alzheimer's disease. Curr Top Med Chem. 2013;13(15):1771-86. [PubMed: 23931443].
  • 15. Nepali K, Sharma S, Sharma M, Bedi PM, Dhar KL. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem. 2014;77:422-87. doi: 10.1016/j.ejmech.2014.03.018. [PubMed: 24685980].
  • 16. Digiacomo M, Chen Z, Wang S, Lapucci A, Macchia M, Yang X, et al. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg Med Chem Lett. 2015;25(4):807-10. doi: 10.1016/j.bmcl.2014.12.084. [PubMed: 25597007].
  • 17. Kacker P, Masetti M, Mangold M, Bottegoni G, Cavalli A. Combining dyad protonation and active site plasticity in BACE-1 structure-based drug design. J Chem Inf Model. 2012;52(5):1079-85. doi: 10.1021/ci200366z. [PubMed: 22313091].
  • 18. Fereidoonnezhad M, Faghih Z, Mojaddami A, Tabaei SMH, Rezaei Z. Novel approach synthesis, molecular docking and cytotoxic activity evaluation of N-phenyl-2, 2-dichloroacetamide derivatives as anticancer agents. J Sci Islamic Republic Iran. 2016;27(1):39-49.
  • 19. Hamedi A, Khoshnoud MJ, Tanideh N, Abbasi F, Fereidoonnezhad M, Mehrabani D. Reproductive Toxicity of Cassia Absus Seeds in Female Rats: Possible Progesteronic Properties of Chaksine and b-Sitosterol. Pharm Chem J. 2015;49(4):268-74. doi: 10.1007/s11094-015-1268-y.
  • 20. Hikisz P, Szczupak L, Koceva-Chyla A, Gu Spiel A, Oehninger L, Ott I, et al. Anticancer and Antibacterial Activity Studies of Gold(I)-Alkynyl Chromones. Molecules. 2015;20(11):19699-718. doi: 10.3390/molecules201119647. [PubMed: 26528965].
  • 21. Webb B, Sali A. Comparative Protein Structure Modeling Using Modeller. Current Protocols in Bioinformatics. John Wiley & Sons; 2014.
  • 22. Morris GM, Huey R, Olson AJ. Using autodock for ligand‐receptor docking. Current protocols in bioinformatics. John Wiley & Sons; 2008.
  • 23. Niper. Protocols. 2015. Available from: http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_Contact_us.html.
  • 24. Fereidoonnezhad M, Faghih Z, Mojaddami A, Sakhteman A, Rezaei Z. A comparative docking studies of dichloroacetate analogues on four isozymes of pyruvate dehydrogenase kinase in humans. Indian J Pharm Edu Res. 2016;50(2):S32-8.
  • 25. Fereidoonnezhad M, Faghih Z, Jokar E, Mojaddami A, Rezaei Z, Khoshneviszadeh M. QSAR, Molecular Docking and protein ligand interaction fingerprint studies of N-phenyl dichloroacetamide derivatives as anticancer agents. Trends Pharm Sci. 2016;2(2).
  • 26. Sakhteman A. PreAuposSOM. 1015. Available from: https://www.biomedicale.univ-paris5.fr/aupossom/.
  • 27. Mantsyzov AB, Bouvier G, Evrard-Todeschi N, Bertho G. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening. Adv Appl Bioinform Chem. 2012;5:61-79. doi: 10.2147/AABC.S30881. [PubMed: 23055752].
  • 28. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61(6):1061-7. doi: 10.1093/sysbio/sys062. [PubMed: 22780991].
  • 29. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics. 2007;8:460. doi: 10.1186/1471-2105-8-460. [PubMed: 18034891].
  • 30. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1100-7. doi: 10.1093/nar/gkr777. [PubMed: 21948594].
  • 31. Wassermann AM, Bajorath J. BindingDB and ChEMBL: online compound databases for drug discovery. Expert Opin Drug Discov. 2011;6(7):683-7. doi: 10.1517/17460441.2011.579100. [PubMed: 22650976].
  • 32. Willighagen EL, Waagmeester A, Spjuth O, Ansell P, Williams AJ, Tkachenko V, et al. The ChEMBL database as linked open data. J Cheminform. 2013;5(1):23. doi: 10.1186/1758-2946-5-23. [PubMed: 23657106].
  • 33. Huang Q, Jin H, Liu Q, Wu Q, Kang H, Cao Z, et al. Proteochemometric modeling of the bioactivity spectra of HIV-1 protease inhibitors by introducing protein-ligand interaction fingerprint. PLoS One. 2012;7(7). e41698. doi: 10.1371/journal.pone.0041698. [PubMed: 22848570].
  • 34. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443-7. doi: 10.1093/nar/gkv315. [PubMed: 25873628].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments