Jundishapur Journal of Natural Pharmaceutical Products

Published by: Kowsar

Genetically Transformed Root-Based Culture Technology in Medicinal Plant Cosmos bipinnatus

Mehdi Jaberi 1 , Ali Sharafi 2 , 3 , 4 , * , Ata Allah Sharafi 1 , Pejman Azadi 5 , Hamidreza Kheiri-Manjili 2 , Hossein Danafar 4 and Alireza Ahmadnia 2
Authors Information
1 Novin Giti Gene Biotech Company, Biotechnology Incubator Center of National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
2 Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
3 Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
4 Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
5 Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Agricultural Research, Education and Extension Organization (AREEO), Iran
Article information
  • Jundishapur Journal of Natural Pharmaceutical Products: February 2018, 13 (1); e67182
  • Published Online: February 17, 2018
  • Article Type: Research Article
  • Received: August 21, 2017
  • Accepted: September 19, 2017
  • DOI: 10.5812/jjnpp.67182

To Cite: Jaberi M, Sharafi A, Sharafi A A, Azadi P, Kheiri-Manjili H, et al. Genetically Transformed Root-Based Culture Technology in Medicinal Plant Cosmos bipinnatus, Jundishapur J Nat Pharm Prod. 2018 ; 13(1):e67182. doi: 10.5812/jjnpp.67182.

Abstract
Copyright © 2017, Jundishapur Journal of Natural Pharmaceutical Products. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. Sohn SH, Yun BS, Kim SY, Choi WS, Jeon HS, Yoo JS, et al. Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 264.7 macrophages. Nat Prod Res. 2013;27(11):1037-40. doi: 10.1080/14786419.2012.686906. [PubMed: 22607357].
  • 2. Jang IC, Park JH, Park E, Park HR, Lee SC. Antioxidative and antigenotoxic activity of extracts from cosmos (Cosmos bipinnatus) flowers. Plant Foods Hum Nutr. 2008;63(4):205-10. doi: 10.1007/s11130-008-0086-8. [PubMed: 18758962].
  • 3. Olajuyigbe O, Ashafa A. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa. Iran J Pharm Res. 2014;13(4):1417-23. [PubMed: 25587332].
  • 4. Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005;76(12):1367-79. doi: 10.1016/j.lfs.2004.08.023. [PubMed: 15670616].
  • 5. Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC. Molecularly targeted agents: their promise as cancer chemopreventive interventions. Eur J Cancer. 2005;41(13):2003-15. doi: 10.1016/j.ejca.2005.06.005. [PubMed: 16098739].
  • 6. Kuo ML, Lee KC, Lin JK. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat Res. 1992;270(2):87-95. doi: 10.1016/0027-5107(92)90119-m.
  • 7. Nomani A, Nosrati H, Manjili HK, Khesalpour L, Danafar H. Preparation and Characterization of Copolymeric Polymersomes for Protein Delivery. Drug Res (Stuttg). 2017;67(8):458-65. doi: 10.1055/s-0043-106051. [PubMed: 28561240].
  • 8. Manjili HK, Sharafi A, Danafar H, Hosseini M, Ramazani A, Ghasemi MH. Poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone)(PCL-PEG-PCL) nanoparticles: a valuable and efficient system for in vitro and in vivo delivery of curcumin. RSC Advances. 2016;6(17):14403-15.
  • 9. Danafar H, Sharafi A, Kheiri Manjili H, Andalib S. Sulforaphane delivery using mPEG-PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol. 2017;22(5):642-51. doi: 10.3109/10837450.2016.1146296. [PubMed: 26916923].
  • 10. Izadi A, Manjili HK, Ma'mani L, Moslemi E, Mashhadikhan M. Sulforaphane loaded PEGylated Iron oxide-gold core shell nanoparticles: A promising delivery system for cancer therapy. American Int J Contemporary Sci Res. 2015;2(5):84-94.
  • 11. Kheiri Manjili H, Jafari H, Ramazani A, Davoudi N. Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants. Parasitol Res. 2012;111(5):2115-21. doi: 10.1007/s00436-012-3059-7. [PubMed: 22875395].
  • 12. Choi EJ, Kim GH. Apigenin Induces Apoptosis through a Mitochondria/Caspase-Pathway in Human Breast Cancer MDA-MB-453 Cells. J Clin Biochem Nutr. 2009;44(3):260-5. doi: 10.3164/jcbn.08-230. [PubMed: 19430615].
  • 13. Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem. 2004;279(6):4479-89. doi: 10.1074/jbc.M305529200. [PubMed: 14602723].
  • 14. Lindenmeyer F, Li H, Menashi S, Soria C, Lu H. Apigenin acts on the tumor cell invasion process and regulates protease production. Nutrition Cancer. 2001;39(1):139-47. doi: 10.1207/S15327914nc391_19.
  • 15. Zheng QS, Sun XL, Xu B, Li G, Song M. Mechanisms of apigenin-7-glucoside as a hepatoprotective agent. Biomed Environ Sci. 2005;18(1):65-70. [PubMed: 15861781].
  • 16. Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Molecular Carcinogenesis. 2000;28(2):102-10.
  • 17. Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. European J Cancer. 1999;35(10):1517-25. doi: 10.1016/s0959-8049(99)00168-9.
  • 18. Budhraja A, Gao N, Zhang Z, Son YO, Cheng S, Wang X, et al. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther. 2012;11(1):132-42. doi: 10.1158/1535-7163.MCT-11-0343. [PubMed: 22084167].
  • 19. Nosrati H, Sefidi N, Sharafi A, Danafar H, Kheiri Manjili H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg Chem. 2018;76:501-9. doi: 10.1016/j.bioorg.2017.12.033. [PubMed: 29310081].
  • 20. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287(4):914-20. doi: 10.1006/bbrc.2001.5672.
  • 21. Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27(6):962-78. doi: 10.1007/s11095-010-0089-7. [PubMed: 20306120].
  • 22. Kheiri Manjili H, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm. 2017;116:17-30. doi: 10.1016/j.ejpb.2016.10.003.
  • 23. Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol. 2007;74(6):1175-85. doi: 10.1007/s00253-007-0856-5. [PubMed: 17294182].
  • 24. Danafar H. Study of the composition of polycaprolactone/poly (ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J Nat Pharm Prod. 2017;12(1). e34179. doi: 10.17795/jjnpp-34179.
  • 25. Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Dehsara B, Hosseini Khalifani B. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation. World J Microbiol Biotechnol. 2013;29(11):2125-31. doi: 10.1007/s11274-013-1377-2. [PubMed: 23681746].
  • 26. Valimehr S, Sanjarian F, Sohi HH, Sharafi A, Sabouni F. A reliable and efficient protocol for inducing genetically transformed roots in medicinal plant Nepeta pogonosperma. Physiol Mol Biol Plants. 2014;20(3):351-6. doi: 10.1007/s12298-014-0235-5. [PubMed: 25049462].
  • 27. Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, et al. Natural products - modifying metabolite pathways in plants. Biotechnol J. 2013;8(10):1159-71. doi: 10.1002/biot.201300224. [PubMed: 24092673].
  • 28. Mirzaee H, Sharafi A, Hashemi Sohi H. In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L. South African J Botany. 2016;104:225-31. doi: 10.1016/j.sajb.2015.10.005.
  • 29. Sharafi A, Sohi HH, Mousavi A, Azadi P, Khalifani BH, Razavi K. Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett. 2013;35(3):445-53. doi: 10.1007/s10529-012-1080-7. [PubMed: 23160738].
  • 30. Huet Y, Ekouna JP, Caron A, Mezreb K, Boitel-Conti M, Guerineau F. Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots. Biotechnol Lett. 2014;36(1):181-90. doi: 10.1007/s10529-013-1335-y. [PubMed: 24078130].
  • 31. Sharafi A, Sohi HH, Azadi P, Sharafi AA. Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants. 2014;20(2):257-62. doi: 10.1007/s12298-013-0217-z. [PubMed: 24757330].
  • 32. Henzi MX, Christey MC, McNeil DL. Factors that influence Agrobacterium rhizogenes -mediated transformation of broccoli ( Brassica oleracea L. var. italica ). Plant Cell Reports. 2000;19(10):994-9. doi: 10.1007/s002990000221.
  • 33. Wyslouzil BE, Waterbury RG, Weathers PJ. The growth of single roots of Artemisia annua in nutrient mist reactors. Biotechnol Bioengineering. 2000;70(2):143-50.
  • 34. Sharafi A, Sohi HH, Mousavi A, Azadi P, Razavi K, Ntui VO. A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell, Tissue and Organ Culture (PCTOC). 2012;113(1):1-9. doi: 10.1007/s11240-012-0246-2.
  • 35. Sudha CG, Sherina TV, Anu Anand VP, Reji JV, Padmesh P, Soniya EV. Agrobacterium rhizogenes mediated transformation of the medicinal plant Decalepis arayalpathra and production of 2-hydroxy-4-methoxy benzaldehyde. Plant Cell, Tissue and Organ Culture (PCTOC). 2012;112(2):217-26. doi: 10.1007/s11240-012-0226-6.
  • 36. Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, et al. Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol Lett. 2011;33(6):1249-55. doi: 10.1007/s10529-011-0550-7. [PubMed: 21287228].
  • 37. Sharafi A, Sohi HH, Mirzaee H, Azadi P. In vitro regeneration and Agrobacterium mediated genetic transformation of Artemisia aucheri Boiss. Physiol Mol Biol Plants. 2014;20(4):487-94. doi: 10.1007/s12298-014-0248-0. [PubMed: 25320471].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments